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Abstract. We consider the special conservative averaging method for solving the heat transfer boundary-value 

problem in the 3-D domain. Looking back to the history of mathematics, integral parabolic splines related to the 

conservative averaging method (CAM), in 1980s A. Buikis developed CAM for partial differential equations with 

discontinuous coefficients in environments with a layered structure. We consider newly designed for CAM the 

special integral hyperbolic type splines for solving some 3-D heat transfer initial-boundary value problems. Using 

these types of splines, the present problem is reduced to the 2-D problem with respect to one coordinate. This 

procedure also allows reducing the 2-D problem to 1-D initial-boundary value problem and to initial value problem 

for ordinary differential equations. Thus, the solution to the problem can be obtained analytically. The solution of 

corresponding 3-D initial-boundary value problem is obtained also numerically, using for approach differential 

equations of discretization in space applying the differences. This method can be considered as a generalization of 

the method of finite volumes, because it can solve BVP with convection, not only in z-direction, but also in y-

direction and x-direction, based on the CAM, and, at the same time, through transformation, moving to the obtained 

BVP without convective terms. The approximation of the 3-D nonstationary problem is based on the implicit 

finite-difference and alternating direction (ADI) methods. The numerical solution is compared with the spline 

solution. The publication provides a wide-ranging insight into the practical uses of 3-D heat transfer boundary-

value problems in general, as well as the effectiveness of the CAM application, in conjunction with the ADI 

method, is analyzed.  

Keywords: 3-D problem, PDE, heat transfer, averaging method, splines, analytical solution. 

Introduction 

During the modelling of thermal systems we have to, due to their complexity, work with a number 

of simplifications. In practice, however, these simplifications have no profound effect on the model’s 

accuracy. During the creation of regulation we have to account for the slow dynamic of the system, 

determine which parameters affect individual heat flows and adjust accordingly. 

Heat transfer problems and their mathematical modelling are well known. As the need for a more 

precise description of the process, a more accurate mathematical model increases the difficulty of 

solving this mathematical problem. Many real convective heat transfer problems have been described 

mathematically and an analysis of their numerical results has been given [1]. Assumptions are often 

used to solve these problems, which simplify the problem itself and thus the solution. 

On the other hand, using a mathematical apparatus, it is possible to simplify the mathematical 

description of the problems under consideration and solve them with simplified, well-known methods, 

and to evaluate the accuracy of these solutions. This is especially true for solving heat transfer problems 

in multilayer environments under changing process conditions [2; 3]. Another area of widespread 

concern is the 3-D environment. For the most part, problems are considered in 1-D, 2-D environments 

or symmetric environments, where it is easier to find a solution. Boiling heat transfer during fluid flow 

is analyzed at [4]. Two dimensional temperature fields are determined at this case. 3-D heat transfer 

through cylindrical structures (filled with oil) with irregular cross-sections, which are bounded by a 

homogeneous elastic medium and heated, is described in [5]. Here 3-D problem can be computed as a 

summation of 2-D solutions. The natural-convection thermal performance of a dielectric liquid in a 

cubical module triggered by a varying rectangular heat generation source is numerically examined at 

[6].Researchers use programming packages very widely. 3-D case of natural convection inside a 

rectangular enclosure with a discretely heated sidewall has been investigated numerically and 

experimentally with ANSYS in [7]. The mathematical model for liquid film flow in 3-D formulation 

has been developed with consideration of thickness changes in vertical and horizontal directions [8].  

3-D convection-diffusion problem is considerd in [9]. It appears that the solution to the problem 

requires substantial mathematical collateral resources, both in theoretical terms (fourth-order alternating 
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direction implicit scheme) and in terms of the use of numerical calculation algorithms (three-

dimensional convection-diffusion equation). Metal distribution in peat layer blocks is modelled in [10].  

The task of sufficient accuracy numerical simulation of quick solution of 3-D problems for 

mathematical physics is important in known areas of the applied sciences. To achieve this goal for 

engineering calculation the conservative averaging method (CAM) is chosen by using special integral 

type splines. The application of this method in modelling the combustion process is shown [11]. 

It is a necessity to solve the 3-D initial-boundary-value problems for parabolic type partial 

differential equations of second order with constant parameters. The special spline which interpolates 

middle integral values of a piece-wise smooth function is defined. A. Buikis considered CAM with 

parabolic type splines for mathematical simulation of the mass transfer process in multilayered 

underground systems [12]. The theoretical basis of the special parabolic, hyperbolic and exponential 

type splines with their practical applications has been developed in [13-15]. 

The conservative averaging method has been applied in the technical sphere, modelling the heat 

distribution in the 3-D area of automotive fuse [16]. A cylindrical mathematical model of automotive 

fuse to characterize the heat-up process in the fuse is described by partial differential equations of 

transient heat conduction. CAM with integral parabolic type splines has been used to get the 

approximated solution of studied problem with analytical formulas [17]. The conservative averaging-

reconstruction method (Ring Average) is used for MHD solvers applying explicit finite-volume methods 

for solving MHD flow problems in cylindrical/spherical geometries. Here, the volume-averaged 

conservative fluid variables (mass, momentum, energy) are usually defined at cell centres. Thus, the 

averaging-reconstruction of the fluid variables is essentially a one-dimensional process along the 

azimuthal direction, and therefore the conservative fluid variables in each ring have been reconstructed 

by the piecewise parabolic method [18]. Here CAM for special hyperbolic type splines is developed. 

With the help of these splines the 3-D initial-boundary value (IBV) of the heat transfer problem with 

respect to one coordinate is reduced to 2-D and 1-D IBV problems. Unlike previous investigations, here 

we use transformation in PDEs for reducing the convection-diffusion heat transfer problem to the 

problem without convection terms. The solution of the corresponding 3-D initial-boundary value 

problem is obtained also numerically, using the implicit finite-difference and alternating direction (ADI) 

methods of J. Douglas and H. H. Rachford [19]. 

These splines in every direction of averaging contain parameters, where it can be chosen so that the 

error of the solution is decreasing. In the limit case, when the spline parameters tend to zero, we get the 

integral parabolic spline, obtained from A. Buikis [12]. 

1. Mathematical model  

The nonstationary convection-diffusion process of heat transfer is considered in 3-D parallelepiped 

 ( ) zyx LzLyLxzyx = 0,0,0:,, . 

We will find the distribution of the temperature u = u(x, y, z, t), ºC at the point (x, y, z, t)  Ω and 

at the time t from the following 3-D initial-boundary value problem (IBVP) for partial differential 

equation (PDE) with convection in z direction: 
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where Dx, Dy, Dz – constant heat diffusion coefficients, m2·s-1; 

 αx, αy, αz – constant heat transfer coefficients in the 3 kind boundary conditions, m·s-1; 

 uaz, uay, uax – are the given temperatures on the boundaries, ºC; 

 rz – constant convective velocity in the z-direction, m·s-1; 

 tf – final time, s; 

 u0(x, y, z) – given initial temperature, ºC. 

It should be said that themes of tasks/problems solved by PDE (also the above mentioned 

convection-diffusion IBVP (1)) include different, often very distinguished areas of science and 

technique, such as economics, fluid dynamics, forecasting, astrophysics, oceanography, meteorology, 

etc., [20; 21]. 

Using the transformation u(x, y, z, t) = exp(–rvz)v(x, y, z, t), rv = rz/2Dz we can reduce the problem 

(1) to the problem without a convective term: 
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2. The CAM with the exponential and hyperbolic type integral spline for 1-D initial boundary-

value problem 

For motivation of the transformation method we especially consider the 1-D IBV problem with 

convection: 
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where  F – fixed constant, ºC·s-1;  

 r – fixed constant, m·s-1.  

We are looking at the convection term of the PDV in only one z-direction to more conveniently 

show how after transformation a new PDV that does not contain a convective term can be transitioned 

and the dimension can be further reduced by using a hyperbolic spline with a known parameter. If 

initially the PDV contains also convective terms in other directions (for example, x, y), then the process 

of dimensional reduction can be analogously continued by obtaining ordinary differential equations.  

It should be noted that there are enough processes in nature, where the dominant mass or 

temperature transfer takes place only in the direction of one coordinate, such as z. Therefore, physical 

processes such as filtration, calculation of contamination in underground waters, as well as certain types 

of combustion processes and other processes that are subject to the given mathematical model may also 

be modelled through the problem under consideration. 

We use without transformation the following exponential type spline approximation: 

 ( ) ( )qLzateLztmtutzu zzzzzz −−+−+= ))2/(exp()(2/)()(),( , 

where  )2/sin()/2( zzzz LaLaq = , dztzuLtu
zL

zz 
−=

0

1 ),()()(  – averaged value. 

The unknown functions mz, ez are determined from boundary conditions by z = 0, z = Lz: 

 0)0))2/(exp(5.0(1 =−−−+−−+ uqLaeLmubem zzzzzzmzz  , 

 0)))2/(exp(5.0(1 =−−++++ uLqLaeLmubem zzzzzzmpzz  , 

where 
zD/1  = , 

zD/1  = , )2/exp( zzzm Laab −= , )2/exp( zzzp Laab = , 
zz Dra /−= . 

Therefore  

 
22 buae zz += ; 

11 buam zz += , det/)( 1212211 aaa  += , det/)( 1112112 aaa  +−= ,  

 det/)0( 1212211 uLauab  +−= , det/)0( 1112112 uLauab  += ; 
21122211det aaaa −= ,  

 
zLa 111 5.01 += , 

zLa 121 5.01 += , ( )qLaba zzm −−−= )2/exp(112  ;  

 ( )qLaba zzp −+= )2/exp(122  . 

Using the integral averaging from equation (3), we have the initial value problem in the following 

form: 
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We have the following solution of these ODEs 

 ( )1)exp()( 0

0

0 −= tA
A

B
tuz

,  

where ( ) 120 raraDqaaA zzz ++= , ( ) 120 rbraDqbaB zzz ++= . 

The 1-D stationary convection-diffusion boundary-value problem (BVP) in the multi-layered plane 

domain in z -direction with different convection velocity in every layer is considered in [11]. In this 
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case, the solution to the BVP is discontinuous and can easily be obtained with the conservative averaging 

method, using the exponential type spline function. 

Using the transformation  

 ),()exp(),( tzvzrtzu v−= , 
zv Drr 2/= ,  

we can reduce the problem (3) to the problem without the convective term: 
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We use the following hyperbolic type spline approximation: 

 
21 )()()(),( zzzzz fteftmtvtzu ++= , 

with the following two fixed hyperbolic functions and the parameter az = |rv|: 
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It can be seen, if parameters tend to zero, then in the limit case we get the integral parabolic spline 

from A. Buikis [12]. 

The unknown functions mz, ez are determined from the boundary conditions of (5) by z = 0, z = Lz: 

 00)5.0)(( 11 =++−+−− ubeLmvrekmd zzzzzvzzzz  , 
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Therefore,  

 22 buae zz += , 11 buam zz += , 
det/))()(( 1212211 arara vv −++= 

,  
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Using the integral averaging from equation (5), we have the initial value problem in the following 

form 
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We have the following solution of these ODEs 

 ( )1)exp()( 0
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where ( )2

20 /2 vzzz rLakDA −= , ( ) )/(1)exp(/2 20 vzzvzzz rLLrFLbkDB −+= . 

2.1. Some numerical results 

The BVP (3) was solved by two methods. The first method resulted in obtaining a solution  

u(z, t) = U using exponential type splines. When using transformation u(z, t) = exp(–rvz)v(z, t), the BVP 

(3) was transformed into a BVP (5), its solution v(z, t) = Vs was obtained by hyperbolic type splines. 

The solution of the BVP (3) by the second method was obtained by multiplying v(z, t) = Vs by  

exp(–rvz), i.e., Us = exp(–rvz) v(z, t). 

Problems (3) and (5) were solved with such dimensionless parameters (their numerical values are 

chosen to solve practical problems), with the aim of clarifying a numerical experiment whether the 

solution (3) obtained by the first method and the second method does not differ significantly, that is, or 

the application of the transformation does not reduce the accuracy of the calculations to be carried out: 

 ,10,200,100,1,10,10 2−====== zz DLuLu   

 ,10,0,4.0,4,2,01.0 ====−= jjttFr jf
 

 05.0;1.0,40,0,
40

1
=== zi aiiz . 

The maximal values of the obtained solutions are given for comparison: u(z, t) = U = 10.0032 

(Fig. 1), v(z, t) = Vs = 9.534 (Fig. 2.), Us = exp(–rvz) v(z, t) = 10.0053. 

When we solve the BVP (3) through transformation, the accuracy of the calculations is virtually not 

lost because the maximal error between U and Us is 0.0403. 

 
 

Fig. 1. Exponential type spline solution –  

the surface u(z, t) = U 

Fig. 2. Hyperbolic type spline solution –  

the surface v(z, t) = Vs 

These numerical calculations in the present paper were performed to demonstrate the usefulness of 

the transformation by determining the parameter az of the hyperbolic type spline function. For practical 

calculations, this method could be used in the work [22], because a similar problem is considered there 

– the diffusion and convection filtration problem of one substance through the pores of a porous material, 

which may absorb and immobilize some of the diffusing substance.  

The domain consists of a porous material, where incompressible liquid pollutants move in  

z-direction through the pores of a filter. The optimal parameters for the hyperbolic type spline function 

in z-direction without transformation can be obtained only with the method of iterations. 

3. The CAM with the hyperbolic type integral spline approximation for solving the initial 

boundary-value 3-D problem 

3.1. The CAM in z-direction 
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For solving the boundary value problem (2) for every 0t we consider the following hyperbolic 

type spline approximation with respect to z-direction: 
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The unknown functions mz, ez are determined from the boundary conditions of (2) by z = 0, z = Lz: 
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Now the initial-boundary value 2-D problem is in following form 
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where 
zzzzz gLkDa /)2(2

0 = , ( ) −== − zL

zvzvvzv LrLrdzzrLC
0

1 ,/1),exp(),exp()( . 

3.2. The CAM in y-direction 

Using the averaged method with respect to y we use 

 
−=

yL

zyy dytyxvLtxv
0

1 ),,()(),( . 

For the following hyperbolic type spline approximation 

 
21 ),(),(),(),,( yyyyyz ftxeftxmtxvtyxv ++= , 

we have  
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−−
= , 

where  
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y
La

La
A

5.0

)5.0sinh(
0 = , 

and as the parameter we choose  

 yzvyzy DDrDaaa //60 +=
 

 yzvyzy DDrDaaa //60 +=
. 

Similarly, we determine the unknown functions mz, ez from the boundary conditions by z = 0, z = Lz: 

 
yyvayy gvCue /)( −= , 

yyyyyyy DkLpbg /25.0 ++= , yyy epm = , 
yyy dkp /= , 

 )5.0coth(5.0 yyyyy LaLad = , )25.0coth(25.0 yyyy Laak = , 
)25.0(sinh8
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2

0
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y
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ALa
b

−
= . 

The initial-boundary value 1-D problem is in following form 
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





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where  
yyyyy gLkDa /)2(2

0 = , 
−=

yL

ozyoy dyyxcLxc
0

1 ),()()( .  

3.3. The CAM in x-direction 

It is possible to proceed averaging also in x-direction 

 
−=

xL

yxx dxtxvLtv
0

1 ),()()( . 

For the following hyperbolic type spline approximation 

 
21 )()()(),( xxxxxy fteftmtvtxv ++= , 

we have  
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and as the parameter we choose  
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. 

Similarly, we determine the unknown functions xx em ,  from the boundary conditions by x = 0, 

x = Lx and  
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xxx epm = , 

xxx dkp /= , 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 26.-28.05.2021. 

 

1736 

 )5.0coth(5.0 xxxxx LaLad = , )25.0coth(25.0 xxxx Laak = , 
)25.0(sinh8

)5.0cosh(
2

0

xx

xxx
x
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ALa
b

−
= . 

From problem (8) the initial problem of linear ODEs follows 
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where 
xxxxx gLkDa /)2(2

0 = .  

The solution of this problem can be obtained with the classical methods. 

For u0 = 0 we have,  

 ( ))exp(1)/()( 000 tBBAtcx −−= ,  

where  
axxazzayy uauauaA 2
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0

2

00 ++= , 22
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In the stationary case we have 

 
00 / BAcx = . 

For fixed tf we have: 

 
21 )()()(),( xfxxfxfxfy fteftmtvtxv ++= , 

xfxaxfx gtvute /))(()( −= , )()( fxxfx teptm = , 

 
21 ),(),(),(),,( yfyyfyfyfz ftxeftxmtxvtyxv ++= , 

yfyayfy gtxvutxe /)),((),( −= . 

 ),(),( fyyfy txeptxm = , 
21 ),,(),,(),,(),,,( zfzzfzfzf ftyxeftyxmtyxvtzyxv ++= , 

 
zfzazfz gtyxvautyxe /)),,((),,( 6−= , ),,(),,(),,( 1 fzfzzfz tyxvatyxeptyxm += , 

 ),,,()exp(),,,( fvf tzyxvzrtzyxu −= .  

4. Numerical approximations with ADI method for solving the initial boundary-value 3-D 

problem 

We use uniform grid in the space ))1()1
~

()1(( +++ MNK : 

  1
~

,1,)1(,)1(,)1(,)1(),,,( +=−=−=−=−= Nihjxhiyhiyhkzxyz xjyiyizkjik
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 xxyyzz LhMLhNLhKKkMj ===+=+= ,
~

,,1,1,1,1 . 

For the time t we use the moments tn = nτ, n – 0,1,…, subscripts (k, i, j, n) refer to z, y, x, t indices 

with the mesh spacing and for approximation of the function u(z, y, x, t) we have the grid function with 

values 

 ),,,(,, njik

n

jik txyzuU  .  

For solving the 3-D problem (1) we use the discrete approximation  
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And ADI method by J. Douglas and H. H. Rachford [19]: 
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  (9) 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 26.-28.05.2021. 

 

1737 

After eliminating the fractional time moments tn + 1/3, tn + 2/3, we obtain the previous discrete problem 

with the approximation error O(τ2). Here Λx, Λy, Λz are the discrete difference operators, approximated 

expressions  
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
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with respect to x, y, z and boundary conditions with central differences. 

For solving Un + 1/3, Un + 2/3 and Un + 1 we use Thomas algorithm in z, y and x directions, respectively. 

5. Results and discussion 

This chapter checks the accuracy of the calculations with the CAM, using the ADI method.  

Two solutions to the 3-D problem (1) are compared, one of which was obtained with the CAM 

using the above mentioned transformation, while the second solution was obtained with the ADI method 

(see Chapter 4). 

The numerical results are obtained for the number of the grid points for (x, y, z), (N֮ = M = 21,  

K = 19) and for the following dimensionless parameters of BVP (1): 

 3,2,1 === xyz LLL , 20,200 === yxz  , 2,3,1 === ayaxaz ccc ,  

 1.0,10,103.0,103.0 222 ==== −−−

zzxy rDDD .  

When using the ADI method, the stationary averaged solution uz(x, y, z, tf) was chosen as the initial 

condition. During proceeding of the ADI method, a stationary solution was obtained with τ = 1, tf = 300 

and with the maximal error (difference between two adjacent iterations) 10-8. 

For comparison of both of the presented methods the maximal values of the obtained solutions are 

the following: u(x, y, 0, tf) = 2.9956 for averaged method (Fig. 3) and u(x, y, 0, tf) = 2.9964 for ADI 

method (Fig. 4). Depending on the number of the grid points, (N֮, M, K) we have following maximal 

values for the ADI method: 2.9964 (N֮ = M = 21, K = 19), 2.9963(N֮ = M = 31, K = 29).  

  

Fig. 3. Levels of averaged  

solution u(x, y, 0, tf) 

Fig. 4. Levels of numerical  

solution u(x, y, 0, tf) 

It appears that the CAM, in terms of precision, is perfectly similar to the ADI method, which 

requires both an adequate theoretical knowledge base on the method itself and adequate knowledge and 

skills for numerical execution of its algorithm. 

It should also be noted that the usage of the CAM shows the possibility of acquiring new knowledge: 

the newly designed algorithms take the form of resolving previously studied tasks/problems in another 

way, which is different from traditional algorithms, and are often even simpler and easier to execute.  

6. Conclusions 
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1. The present paper deals with the special transformation created that transforms the 3-D heat transfer 

boundary-value problem (BVP) with convection in z -direction to a corresponding problem (BVP) 

without convection. 

2. Applying the method, the 1-D initial-boundary value problem (IBVP) with convection is solved 

using the special transformation – thus obtaining the IBVP without a convective term, which 

allowed to determine the coefficients of the spline function in such a way that the calculation error 

is minimal. 

3. The corresponding 3-D BVP with the special transformation was also modified into a problem 

without a convective term, and further, based on the CAM, the problem obtained was reduced to 2-

D and 1-D problems, using the integral hyperbolic splines with the parameters (the spline function 

coefficients) found. 

4. The stationary numerical solution is compared with the spline solution. The maximal absolute value 

of the difference between the corresponding numerical and averaged solutions was 0.1-0.2 percent. 

5. The methodology with the transformation described above allows us to solve also the tasks of a 

wider class – with convection also in y-direction and x-direction, thereby reducing the studying 

BVP to the problem without convective terms, which, in turn, allows us to determine the spline 

function coefficients for minimizing the calculation errors. 
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